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Logistics

Take-home handed back after class.

Error in grading problem 2. Please get in touch with Arash if
this applies to you.

HW due Friday; next HW due Wed.
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Bayesian Estimation

If we are trying to estimate a parameter Θ and have observations
X = (X1,X2, ...,Xn):

The distribution of pθ (fΘ) is assumed to be known. This is
called the Prior Distribution.

A complete solution to the estimation problem is provided by
pθ|X (or fΘ|X ). This is called the Posterior Distribution.
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Bayesian Estimation of Gaussians

We make n measurements of an unknown quantity θ and make n
independent observations:

Xi = θ + Wi , i = 1, 2, ..., n

where Wi is noise distributed N(0, σ2) and independent of θ. We start
with the prior θ ∼ N(x0, σ

2).
Then θ|X1, ...,Xn ∼ N(m, v) where

m =
x0 + ...+ xn

n + 1
, v =

σ2

n + 1

In general, if the prior is distributed N(x0, σ
2
0) and Wi ∼ N(0, σ2

i ) then:
θ|X1, ...,Xn ∼ N(m, v)

m =

∑n
i=0 sixi∑n
i=0 si

, v =
1∑n
i=0 si

where si = 1
σ2
i
:

So the posterior has the same kind of distribution as the prior!
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Maximum a Posteriori (MAP) Rule

Suppose we are forced to pick a point estimate instead of a
distribution.
Then as we have seen, the Bayesian is going to choose the rule:

θ̂ = argmaxθpΘ|x(θ|x) (Θ discrete)

θ̂ = argmaxθfΘ|x(θ|x) (Θ continuous)

Example: Suppose there are two possible values: θ1 and θ2. Then
MAP picks θ1 iff pΘ|X )(θ1|x) ≥ pΘ|X (θ1|x), I.e.,

P(X = x |θ = θ1)

P(X = x |θ = θ2
≥ P(θ2)

P(θ1)

Notice that P(X = x) always cancels out...
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How good is the MAP Rule?

The MAP rule can be pretty good esp. when θ is discrete. Let
gM(X ) be the MAP rule.
Suppose there is another procedure that produces an estimate
go(X ) given observations X . Let Io be a boolean r.v. that is 1
when the procedure is correctly estimates θ and zero o.w.

E [Io |X ] = P(g(X ) = θ|X ) ≤ P(Θ = θ̂|X ) = E [Im|X ]

Iterated expectations:
E [Io ] ≤ E [Im]

So the MAP rule maximizes the probability of estimating, over all
rules. All bets are off when θ is continuous...
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Issue with Point Estimators such as MAP

1 Sometimes the maximum of a distribution is not typical.

2 Example: Higher dimensional data: Say θ is a point in <n and
the posterior is a joint gaussian of n independent standard
normals. Maximum of the distribution is at the origin (the
mean). For n = 1000, 90% of the probability is in a shell of
radius 31.6 and thinkness 2.8.

3 So use with care.

What about picking E [Θ|X ] as a point estimator?
The mean of the distribution might be more typical then the point
of maximum density.
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E [Θ|X ] minimizes the conditional MSE

How to find the Θ̂ which minimizes E [(Θ− θ̂)2], i.e. the mean
square error?

E [(Θ− θ̂)2] = var(Θ− θ̂) + (E [Θ− θ̂])2

= var(Θ) + (E [Θ]− θ̂)2

So pick θ̂ = E [Θ] Now suppose we make an observation for random
variable Θ, i.e. X = x . Then what should our estimate be? Again,
we want to minimize mean square error (given X = x) so:

E [(Θ− θ̂)2|X = x ] is minimized at θ̂ = E [Θ|X = x ]
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General Result

Suppose g(X ) is another decision rule for arriving at some
estimate of Θ. Then

E [(Θ− E [Θ|X = x ])2|X = x ] ≤ E [(Θ− g(x))2|X = x ]

Since this holds for every value X = x :

E [(Θ− E [Θ|X ])2|X ] ≤ E [(Θ− g(x))2|X ]

Iterated Expectations:

E [(Θ− E [Θ|X ])2] ≤ E [(Θ− g(x))2]

So E [Θ|X ] is the estimator with the lowest unconditional
mean-square error.
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Some other Properties of E [Θ|X ]

The estimation error is Θ̄ = θ̂ − θ. Let θ̂ = E [Θ|X ]:

1 E [θ̄] = 0 Error is unbiased

2 cov(θ̂, θ̄) = 0: error is uncorrelated with the estimate.

3 var(Θ) = var(θ̂) + var(θ̄)
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Example

X = Θ + W where W is distributed uniformly on [−1, 1] and Θ is
uniform on [4, 10]. Then X |Θ = θ is uniform on [θ − 1, θ + 1].
Then, fΘ,X (θ, x) = 1

2
1
6 = 1

12 . Find E [Θ|X = x ].
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Example

X = Θ + W where W is distributed uniformly on [−1, 1] and Θ is
uniform on [4, 10]. Then X |Θ = θ is uniform on [θ − 1, θ + 1].
Then, fΘ,X (θ, x) = 1

2
1
6 = 1

12 . Find MSE = var(Θ|X = x).
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Alice and Bob revisited

Recall: Bob is late by an amount randomly distributed on [0,Θ], Θ
uniform on [0, 1]. If Bob is late by x , we saw that

fΘ|X (θ|x) =
c

θ

for θ ∈ [x , 1] and zero otherwise. So the MAP rule picks θM = x .
The LMS estimate is

E [Θ|X = x ] =

∫ 1

x
θ
c

θ
dθ = c(1− x)
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Alice and Bob revisited

What is the MSE? If the estimate is θ̂:

E [(θ̂ − θ)2|X = x ] =

∫ 1

x
(θ̂ − θ)2 c

θ
dθ

=

∫ 1

x
(θ̂2 − 2θ̂θ + θ2)

c

θ
dθ

= θ̂c

∫ 1

x

1

θ
dθ − 2θ̂c

∫ 1

x
2dθ + c

∫ 1

x
θdθ

= θ̂c|lnx | − 2c θ̂(1− x) +
c

2
(1− x2)

Substitute θ̂ = x for MAP and θ̂ = c(1− x) in the expression.
What do you get?
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Comparison between MAP and LMS
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Estimating Multiple Parameters

We need to estimate Θi , i = 1, 2, ..., k . What to do?
Minimize the sum of the individual MSE’s:

E [Θ1 − θ̂1] + · · ·+ E [Θk − θ̂k ]

Solve k decoupled MSE problems: θ̂i = E [Θi |X ].
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MSE and multiple observations

Observations are X1, ...,Xn: MSE is minimized by E [Θ|X1, ...,Xn].
Calculations are frequently very cumbersome.

1 Need joint distribution fΘ,X1,....,Xn .

2 Expectation integral can be quite tricky

Need a computationally easier method that is still pretty good.
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Bayes Linear Least Squares Estimate

Find the estimator that minimizes MSE but that is of the form

θ̂ = a1X1 + a2X2 + · · ·+ anXn + b

This estimate is linear in the observations and is called the
Bayesian Linear Least Squared Estimate.
We want to choose a1, a2, .., an, b which minimize:

E [(Θ− (
∑
i

aiXi )− b)2]

Calculations involve covariances between pairs of random variables
and are manageable.
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Bayes Linear LSE: One observation

Choose a, b which minimize: E [(Θ− aX − b)2].
Let’s focus on b first. For any given value of a, The MSE of the
r.v. Θ− aX is minimized by E [θ − aX ]. Thus set

b = E [θ − aX ]

.Substitute this value of b to find the best a:

E [(Θ− a1X − b)2] = E [(Θ− a1X − E [θ − aX ])2] = var(Θ− a1X )

var(Θ−a1X ) = σ2
Θ+a2

1σ
2
X+2cov(Θ,−a1X ) = σ2

Θ+a2
1σ

2
X−2acov(Θ,X )

Take derivative wrt a and set to zero.

2aσ2
X = 2cov(Θ,X )⇒ a =

cov(Θ,X )

σ2
X

.

Rewriting using cov(Θ,X ) = ρσΘσX :

a = ρ
σθ
σX
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Bayes Linear LSE: One observation

What about the MSE?
Since b = E [θ − aX ],

E [Θ− θ̂] = E [Θ]− aE [X ]− E [Θ] + aE [X ] = 0.

So MSE is the same as var(θ − θ̂).

var(Θ− Θ̂) = σ2
Θa

2σ2
X − 2acov(Θ,X )

Substituting: MSE = (1− ρ2)σ2
Θ.

21



Outline Logistics Review Bayesian LMS Estimator Bayesian Linear Least Squares Estimate

Bayes LLSE with one observation

Given an observation X :

Θ̂ = E [Θ] +
cov(X ,Θ)

σ2
X

(X − E [X ]) = E [Θ] + ρ
σΘ

σX
(X − E [X ])

where

ρΘ,X =
cov(Θ,X )

σXσΘ

The MSE is
(1− ρ2)σ2

Θ.
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Alice and Bob Revisited

Recall: Bob is late by an amount randomly distributed on [0,Θ], Θ
uniform on [0, 1]. What is the Bayes LLSE for X , the amount he is
late? Need to find: σX , σΘ, cov(X ,Θ).
Deal with X first:
Since E [X |Θ] = Θ/2, by iterated expectations: E [X ] = 1

4 .
From the Law of Total Variance:

var(X ) = E [var(X |Θ)] + var(E [X |Θ)

Also, var(X |Θ) = Θ2

12 .

E [var(X |Θ)] =

∫ 1

0

θ2

12
dθ =

1

36

and

var(E [X |Θ]) = var(
Θ

2
) =

1

4

1

12
=

1

48

var(X ) =
7

144
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Alice and Bob Revisited

Recall: Bob is late by an amount randomly distributed on [0,Θ], Θ
uniform on [0, 1]. What is the Bayes LLSE for X , the amount he is
late?
Next deal with Θ: E [Θ] = 1/2,E [Θ2] = 1/12 + 1/4 = 1/4Finally,
cov(Θ,X ) = E [ΘX ]− E [X ]E [Θ]:

E [ΘX ] = E [E [ΘX ]|Θ] = E [
Θ2

2
] =

1

6
.

cov(X ,Θ) =
1

6
− 1

4

1

2
=

1

24
So:

Θ̂ = E [Θ] +
cov(X ,Θ)

σ2
X

(X − E [X ]) =
1

2
+

1/24

7/144
(X − 1

4
)

Θ̂ =
6

7
X +

2

7
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Comparing Estimates and MSE
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Multiple Observations

Suppose we want to estimate Θ and observe X1, ...,Xm:

Xi = Θ + Wi

where the Wi and Θ are uncorrelated. The prior for Θ has mean µ
and variance σ2

0. Then we want to minimize:

E [(Θ− (
∑
i

aiXi )− b)2]

By taking partial derivatives, setting to zero and solving for
unknowns:

Θ̂ =
µ/σ2

0 +
∑m

i=1 Xi/σ
2
i∑m

i=0 1/σ2
i

If all the σ = σi for i = 0, 1, 2, ...,m:

Θ̂ =
µ+ x1 + · · ·+ xm

m + 1
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Gaussian Interpretation of Bayes LLSE

The LLSE is expressed in terms of means and (co) variances. So is
a Gaussian rv.
We saw in the last lecture that for the problem of estimating Θ
where

Xi = Θ + Wi

Xi independent of each other Θ; Xi Gaussian, the posterior is
Gaussian if the prior for Θ is Gaussian.
In fact: LMS = LLSE!
One way of thinking about LLSE is that it is the LMS estimate
when we assume that all the distributions are Gaussian.
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Summary

Bayesian Estimation makes a lot of sense if you know the
priors.

Even if you do not, you can learn them given a sufficient
number of observations.

Finding the posterior distribution is computationally difficult

The MAP rule works well for discrete parameters

The LMS estimator is generally preferred for continuous
distributions, but it is computationally hard to calculate

Linear LSE estimate is easier – assume that everything is
Gaussian.
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