
Outline Logistics Review Bayesian Estimation

EE126: Probability and Random Processes
Lecture 23: Bayesian Estimation

Abhay Parekh

UC Berkeley

April 19, 2011

1



Outline Logistics Review Bayesian Estimation

1 Logistics

2 Review

3 Bayesian Estimation

2



Outline Logistics Review Bayesian Estimation

Logistics

Turn in your take-home if you attempted it

I’ll hand out the exams at the end of class

Mean 44.25, σ = 19.45, median = 43

Regrades until Thursday

HW due Friday; next HW due Wed.
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MC Results: Common Method

1 Write a recurrence in terms of the state just before or just
after the state of interest

2 Show that the resulting set of equations has a unique solution.

C-K: Just before i : πi =
∑

j πjpji

First recurrent state from i : Just after i : ai =
∑

j pijai .

Mean time to absorbtion from i : Just after i :
µi = 1 +

∑
j pijµj

Mean time from i to s: Just after i : ti = 1 +
∑

j pij tj
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Steady State Convergence

Any MC with a single aperiodic recurrent class must converge in
the sense that

1 For each state j :

lim
n→∞

rij(n) = πj , for all i

2 πj are given by the system of equations:

πj =
m∑

k=1

πkpkj , j = 1, 2, ...,m

1 =
m∑

k=1

pik

3 πj = 0 for all transient states j .
πj > 0 for all recurrent states j .
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First Recurrent State: Absorbtion

Consider a MC with some transient states. Let s be a recurrent
state. We want the prob that s is the first recurrent state visited
when X0 = i . Let this be ai .

Make each recurrent state absorbing. Then the MC has
transient and absorbing states.

Let T be the set of transient states.

ai =
m∑
j=1

pijaj , i ∈ T , as = 1, ai = 0, if i is not s but recurrent

This system of equations always has a unique solution.

6



Outline Logistics Review Bayesian Estimation

Expected Time to Absorbtion

The expected times to absorbtion µ1, ..., µm are the unique
solution to the equations

µi = 0, i recurrent

µi = 1 +
m∑
j=1

pijµj i transient
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Return times

Mean First Passage Time and Recurrence Times

Consider a MC with a single recurrent class and let s be a
particular recurrent state.

The Mean First Passage time is the expected time for a
recurrent state s to be reached from some state i :
The mean first passage times ti to reach s starting from i are
given by

ts = 0, ti = 1 +
m∑
j=1

pij tj , for all i 6= s

The mean recurrence time is the expected time that a state s
takes to return to itself.
The mean recurrence time t∗s of state s is given by

t∗s = 1 +
m∑
j=1

psj tj
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Inference

So far we’ve studied problems that have

well defined models (Poisson Process, Markov Chain, etc)

clearly defined variable (Bias of a coin, time to reach
destination etc)

Often, things aren’t so clear-cut! We have to answer questions
based on a whole lot of noisy data!

1 Model Inference: What does the traffic on the internet look
like? Is it Poisson? Must infer from the
data...Recommendation Engines. What if the data fits more
than model - which one to pick?

2 Variable Inference: Suppose a flip a coin 5 times. What can I
infer about the value of the bias?

Inferring from observed data (which frequently include noise) is
obviously a very important problem. But how to do this is not as
clear-cut as the problems we have been studying...
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Two ways to treat unknowns

The goal of the inference is to come up with the best estimate
of the VALUE of the unknown: Example: The bias of the coin
is 0.75.

The goal of the inference is to come up with the best estimate
of the DISTRIBUTION of the unknown: Example: The bias
of the coin is uniformly distributed between [0.75, 0.85].

The first approach follows CLASSICAL statistics and the second
approach follows BAYESIAN statistics.
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Example: Bias of a Coin

Bob tosses a coin 3 times and gets three heads. What should he
estimate the probability of Heads, h, to be? To keep things simple,
assume that h ∈ {0, 0.1, 0.2, ..., 1}. Let X be the number of heads
in 3 tosses.

1 Find the value, h∗, that maximizes P(X = 3|h). Thus we
estimate the bias to be 1.

2 Find P(h|X = 3).

P(h,X = 3)

P(X = 3)
=

P(X = 3|h)P(h)∑
h P(X = 3|h)P(h)

.

This gives us a probability distribution that depends on P(h):
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Two Basic Questions

1 Point estimate or distribution?

2 Which conditional should we use: P(h|X = 3) or P(X = 3|h)?
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Comparison between conditionals

P(h|X = 3) = P(X = 3|h)
P(h)∑

h P(X = 3|h)P(h)
.

If h is uniformly distributed then:

P(h|X = 3) = P(X = 3|h)
1∑

h P(X = 3|h)
.

Since denominator does not depend on h the two approaches
are pretty much the same.
P(h = 0.5) = 0.9,P(h = 1) = .1:

P(h|X = 3) =


(0.5)3(0.9)

(0.5)3(0.9)+(1)(0.1)
= 0.529, p=0.5;

(1)(0.1)
(0.5)3(0.9)+(1)(0.1)

= 0.471, p=1;

0, o.w.

Now the difference is significant!

If you know P(h) you should use it!
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Distribution or Point Estimate?

Suppose P(h) is uniform, i.e. P(h) = 1
11 , h = 0, 0.1, 0.2, ..., 1

P(h,X = 3) = P(X = 3|p)P(h) =
p3

11

P(X = 3) =
10∑
i=1

P(X = 3|p =
1

i
)

1

11
=

1

11
(1+0.93+0.83+...+0.13)

So

P(p|X = 3) =
p3

3.025

Point estimate of h = 1
has an error of 0.67.
Distribution tells us
that P(h ∈
{0.8, 0.9, 1} ≥ 0.74
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Bayesian Estimation

If we are trying to estimate a parameter Θ and have observations
X = (X1,X2, ...,Xn):

The distribution of pθ (fΘ) is assumed to be known. This is
called the Prior Distribution.

A complete solution to the estimation problem is provided by
pθ|X (or fΘ|X ). This is called the Posterior Distribution.
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Bayesian Estimation and Priors

What if we don’t have a good initial estimate of the prior?
Can we learn as make observations? Otherwise this approach
could be very inaccurate!

Estimate at the end of each observation. Start with say a
uniform prior. After making an observation, calculate the
posterior distribution. Then use this posterior as the prior for
the next observation!
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Learning by Updating Prior

Suppose P(h) actually distributed so that P(h = 1) = 1.0, but the
possible values are h = 0, 0.1, ..., 0.9, 1.

Start with a uniform prior. Observe a head. The posterior is:

P(h|H) =
P(H|h)P(h)∑
h P(H|h)P(h)

=
h

5.5

Set P(h) = h/5.5. Observe another H. Now the posterior is:

P(h|H) =
P(H|h)P(h)∑
h P(H|h)P(h)

=
hh/5.5∑
h h

2/5.5
=

h2

3.85

Set P(h) = h2/3.85. Observe another H. Now the posterior is

P(h|H) =
P(H|h)P(h)∑
h P(H|h)P(h)

=
hh2/3.85∑
h h

3/3.855
=

h3

3.025

This is what we got before from direct calculation.

The method converges to the correct distribution as more
observations are made.
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Example

Bob is usually late for his meetings with Alice. In fact he is late by
a random amount X uniformly distributed on [0,Θ] where Θ is
unknown. Alice models the prior of Θ to be uniform in [0, 1].
Suppose Bob is late by x for the next meeting.
fX |Θ(x |θ) = 1

θ if x ∈ [0, θ] and 0 otherwise.
So Alice finds the posterior: It is non-zero as long as x ≤ θ ≤ 1
and is equal to

fΘ|X (θ|x) =
1/θ∫ 1

x
1
θ′ dθ

′
=

1

θ| ln x |

For the next meeting, she uses the posterior as as the new prior.
The new prior is not uniform.
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Example: Inference of a Common Mean

We make n measurements of an unknown quantity θ and make n
independent observations:

Xi = θ + W , i = 1, 2, ..., n

where W is noise distributed N(0, σ2) and independent of θ. We start
with the prior θ ∼ N(x0, σ

2).
Then

fΘ(θ) = c1 exp{− (θ − x0)2

2σ2
}

and

fX1,...,Xn|θ(x1, ..., xn|θ) = c2 exp{−
∑n

i=1(xi − θ)2

2σ2
}

So one can calculate the posterior. We get that θ|X1, ...,Xn ∼ N(m, v)
where

m =
x0 + ...+ xn

n + 1
, v =

σ2

n + 1
So the posterior has the same kind of distribution as the prior!
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Recursive Calculation of Common Mean

Since the prior and posterior have are normally distributed we just
need to keep track of two numbers: mean and variance. Suppose n
observations have been made and we now make the n + 1st one.
The new posterior has mean

mn+1 =
(mn/vn) + (xn+1/σ

2)

(1/vn)(1 + σ2)

and variance

vn+1 =
1

(1/vn)(1/σ2)
.

This allows for easy updating of the estimate. Unfortunately, most
of the time, finding the posterior distribution is computationally
intensive.
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Maximum a Posteriori (MAP) Rule

Suppose we are forced to pick a point estimate instead of a
distribution.
Then as we have seen, the Bayesian is going to choose the rule:

θ̂ = argmaxθpΘ|x(θ|x) (Θ discrete)

θ̂ = argmaxθfΘ|x(θ|x) (Θ continuous)

Example: Suppose there are two possible values: θ1 and θ2. Then
MAP picks θ1 iff pΘ|X )(θ1|x) ≥ pΘ|X (θ1|x), I.e.,

P(X = x |θ = θ1)

P(X = x |θ = θ2
≥ P(θ2)

P(θ1)

Notice that P(X = x) always cancels out...
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How good is the MAP Rule?

The MAP rule can be pretty good esp. when θ is discrete. Let
gM(X ) be the MAP rule.
Suppose there is another procedure that produces an estimate
go(X ) given observations X . Let Io be a boolean r.v. that is 1
when the procedure is correctly estimates θ and zero o.w.

E [Io |X ] = P(g(X ) = θ|X ) ≤ P(Θ = θ̂|X ) = E [Im|X ]

Iterated expectations:
E [Io ] ≤ E [Im]

So the MAP rule maximizes the probability of estimating, over all
rules. All bets are off when θ is continuous...
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Example: Binary Hypothesis Testing

Coins of two types: bias is either p1 or p2. Equally likely to
pick either.

Toss the selected coin n times and get k heads. Which coin
did we pick?

MAP picks θ1 iff pΘ|X )(θ1|x) ≥ pΘ|X (θ1|x), I.e.,

P(X = x |θ = θ1)

P(X = x |θ = θ2
=

pk1 (1− p1)n−k

pk2 (1− p)n−k
≥ P(θ2)

P(θ1)
= 1

This is a threshold rule: Assuming that p1 < p2, there is an integer
k∗ such that you pick θ1 as long as k ≤ k∗ and pick θ2 otherwise.

P(error) = P(Θ = θ1,X > k∗) + P(Θ = θ2,K ≤ k∗)

Of all threshold rules, the MAP-based threshold minimizes the
P(error).
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Example: Matched Filter

The transmitter transmits two types of messages: Θ = 1 if it sends
A = (a1, a2, ..., an) and Θ = 2 if it sends B = (b1, b2, ..., bn). We
require that

∑
i a

2
i =

∑
i b

2
i (equal energy).

Xi = Si + Wi

where Si is the signal sent and Wi ∼ N(0, 1) and are iid. Under
θ = 1: The Xi are independent rvs N(ai , 1).
Result:

Pick Θ = 1 if

n∑
i=1

aixi >
n∑

i=1

bixi

(Pick Θ = 2 otherwise.).
What does this mean? Project the received vector on A and B.
Pick the message for the magnitude is the greatest.
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Issue with Point Estimators such as MAP

1 Sometimes the maximum of a distribution is not typical.

2 Example: Higher dimensional data: Say θ is a point in <n and
the posterior is a joint gaussian of n independent standard
normals. Maximum of the distribution is at the origin (the
mean). For n = 1000, 90% of the probability is in a shell of
radius 31.6 and thinkness 2.8.

3 So use with care.

What about picking E [Θ|X ] as a point estimator?
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